If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40=x
We move all terms to the left:
5x^2-40-(x)=0
We add all the numbers together, and all the variables
5x^2-1x-40=0
a = 5; b = -1; c = -40;
Δ = b2-4ac
Δ = -12-4·5·(-40)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{89}}{2*5}=\frac{1-3\sqrt{89}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{89}}{2*5}=\frac{1+3\sqrt{89}}{10} $
| 4t+14=58 | | F(x)=x2+6 | | 6+10x=27 | | -x+8(x+4)=88 | | -3x-5=-5x+3 | | (7x-16)(3x+19)=0 | | 33=45-v | | −3x−5=−5x+3 | | (0.25+x)(0.4+x)=0.2 | | 18-2r=14 | | 2+6x-7=x-2x | | 8(2n-3)=-15n-(2n+9) | | 4x^2-36=04x2−36=0 | | 8t-9=31 | | 2y^2-6y-3=0 | | 12=3r+3 | | h/8-2=1 | | -5(2x-8)=100 | | -4(3k+2=-28 | | 33=25+u | | -4(3k+2)=-28 | | 5+7f=89 | | 4(y+2)=3 | | 6t+19=67 | | 3x-7-4x-9=0 | | w+13=-11-5w | | 6+4j=46 | | X/4=x/5+4 | | 7/2x+9=-19 | | 1+2x+x=44 | | u+34=40 | | 7k−8=-k |